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Abstract

A finite difference method is used to solve the one-dimensional Stefan problem with periodic Dirichlet boundary

condition. The temperature distribution, the position of the moving boundary and its velocity are evaluated. It is shown

that, for given oscillation frequency, both the size of the domain and the oscillation amplitude of the periodically

oscillating surface temperature, strongly influence the temperature distribution and the boundary movement. Fur-

thermore, good agreement between the present finite difference results and numerical results obtained previously using

the nodal integral method is seen.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Moving boundary problems or Stefan problems in-

volving heat and mass transfer in materials undergoing

phase change arise in many physical processes, such as

melting of ice, recrystallization of metals, binary alloy

melting and solidification induced by pulsed-laser ir-

radiation, evaporation of droplets, oxygen diffusion

problem, particle dissolution in solid media, etc. Such a

process covers a wide range of applications in which

phase changes from solid, liquid or vapour states. The

material is assumed to undergo a phase change with a

moving boundary that has to be tracked as part of the

solution. Owing to the unknown location of the phase

change interface and the nonlinear form of the thermal

energy balance equation at the interface, analytical so-

lutions are difficult to obtain except for a limited number

of special cases.

Due to difficulties in obtaining analytical solutions,

various numerical techniques are often employed [1].

Numerical techniques are specially known to have dif-

ficulties with time-dependent boundary conditions, and

very fine mesh size and small time steps are often needed

for accurate solutions. Because these are often computer

intensive––only a few results for the Stefan problem with

time-dependent boundary conditions are available in the

literature. Solutions of such Stefan problems include

linear, exponential and periodical variation of the sur-

face temperature or the flux with time [2–4]. The Stefan

problem with periodically (in time) oscillating tempera-

ture on the fixed boundary is important for practical

cases involving melting and solidification of ice over the

diurnal cycle, and in industrial processes with cyclical

surface temperature or heat flux variation. The position

of the moving boundary, its velocity and the tempera-

ture distribution within the domain are important for

these applications. A comparative study of various nu-

merical methods for moving boundary problems has

been made by Furzeland [3].

There are two main approaches to the solution of the

Stefan problem. One is the front-tracking method, where

the position of the phase boundary is continuously

tracked. As for example, the heat balance integral

method [5] explicitly tracks the motion of isotherms (the

phase boundary being one of them). Alternatively,

variable grid methods (variable space grid and variable

time step) provide the way to track the phase front
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explicitly [6]. However, these methods are poorly suited

to multi-dimensional problems due to the difficulties with

algorithms of implementation and large computational

cost. Another approach is to use a fixed-domain formu-

lation. For example, the isotherm migration method,

uses temperature as independent variable [7]. A more

common one is the enthalpy method in which enth-

alpy rather than temperature is an independent variable

[8,9]. Alternatively, using a suitable coordinate trans-

formation, one may immobilise the moving front at

the expense of solving a more complicated problem

[10–12].

Various numerical methods have been applied to the

Stefan problem including finite element, finite difference

and integral methods. Several finite element methods

have been developed and successfully applied to the

Stefan problem with various boundary and initial con-

ditions [10,13–15]. Solutions reported in the literature

using the finite difference methods for solving the mov-

ing boundary problem include the one-dimensional

Stefan problem describing the evaporation processes

[16,17], the process of melting of solid [18], oxygen dif-

fusion problem [12] and the dissolution of stoichiometric

multi-component particles in ternary alloys [19]. On the

other hand, a coupling integral equation approach has

been used by Mennig and €OOzis�ik [2] for solving the
Stefan problem describing the melting/solidification

process as well as the nodal integral (NI) approach ap-

plied by Rizwan-uddin [4,11] to the Stefan problem de-

scribing the melting of solids, where these phase-change

problems involve time-dependent boundary conditions.

Generally, in terms of accuracy and efficiency, the choice

between various finite element, finite difference and in-

tegral methods for the solution of a particular Stefan

problem is not always clear, due to their specific ad-

vantages and limitations.

In this paper we consider the one-dimensional Stefan

problem with periodic Dirichlet boundary condition,

and use the finite difference approach in order to

determine the temperature distribution and phase bound-

ary during the process.

2. Formulation

The dimensionless formulation of the Stefan problem

for the liquid region of a melting solid at the phase

change temperature in an invariant domain (06 x6 1) is
[4,11]

o2T ðx; tÞ
ox2

þ xRðtÞdRðtÞ
dt

oT ðx; tÞ
ox

¼ R2ðtÞ oT ðx; tÞ
ot

;

06 x6 1; ð1Þ

RðtÞ dRðtÞ
dt

¼ �Ste oT ðx; tÞ
ox

; x ¼ 1; ð2Þ

subject to the initial and boundary conditions

R ¼ 0; t6 0;

T ¼ f ðtÞ; x ¼ 0; t > 0;

T ¼ 0; x ¼ 1; t > 0;

ð3Þ

where T ðx; tÞ is the temperature distribution, R is the

position of the moving boundary, Ste is the Stefan

number given by ðClDTrefÞ=hsl, with Cl––the specific heat
capacity of liquid, hsl––the latent heat and DTref ––a
reference temperature [20].

As the solid melts with time, the moving boundary

RðtÞ moves to the right. If the temperature in the solid
region (x > 1) is assumed to be spatially uniform and

constant in time, equal to the phase change temperature,

as here, then the problem is usually referred to as the

single-phase Stefan problem.

The time-dependent surface temperature boundary

condition is assumed to be of the form T ðx ¼ 0; tÞ �
f ðtÞ ¼ ½1þ e sinðxtÞ�, the same form used earlier by

Rizwan-uddin [4], where e is the surface temperature
oscillation amplitude and x is the oscillation frequency.
Thus, we have three physical parameters (Ste, e and x)
in this model. In order to solve the Stefan problem de-

fined by Eqs. (1)–(3) Rizwan-uddin [4] employed the

nodal integral method.

3. Finite difference method

We now report, to solve this Stefan problem using

the finite difference method. We employ an explicit finite

difference method. Using a forward difference scheme

for the time derivative and a central difference scheme

for the space derivative, Eq. (1) in discretized form can

be expressed as

Ti;mþ1 ¼ Ti;m þ kxi _RRm

2hRm
ðTiþ1;m � Ti�1;mÞ

þ k
h2R2m

ðTiþ1;m � 2Ti;m þ Ti�1;mÞ; ð4Þ

where Ti;m � T ðxi; tmÞ, h (� Dx) is the constant space grid
size such that xi ¼ ih, with i ¼ 0; 1; . . . ;N (x0 ¼ 0,
xN ¼ 1), tm ¼ t0 þ mk, where k (� Dt) is the time step and
t0 is the time at which the numerical process is initialised.
A truncation error for this scheme is OðkÞ þOðh2Þ.
The temperature distribution at the origin (x ¼ 0) is

easily obtained using Eq. (3), which in discretized form is

Ti;m � f ðtmÞ ¼ ½1þ e sinðxtmÞ�; i ¼ 0; m ¼ 0; 1; 2; . . .
ð5Þ

For the temperature distribution at 0 < x < 1 (i ¼ 1;
2; . . . ;N � 1, m ¼ 0; 1; 2; . . .,) Eq. (4) will be used. The
temperature distribution at x ¼ 1 according to (3) is

Ti;m ¼ 0; i ¼ N ; m ¼ 0; 1; 2; . . . ð6Þ
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The Stefan condition (2) at x ¼ 1 (i ¼ N) in discret-
ized form is

Rmþ1 ¼ Rm � kSte
2hRm

ð3TN ;m � 4TN�1;m þ TN�2;mÞ;

m ¼ 0; 1; 2; . . . ; ð7Þ

where the following three point backward scheme [3,17]

is used for the temperature gradient at the moving in-

terface (x ¼ 1 ¼ NDx):

oT
ox

�
�
�
�
x¼R

¼ 3TN � 4TN�1 þ TN�2

2Dx
þOðDx2Þ: ð8Þ

Initial condition (3) in discretized form is

R0 ¼ 0: ð9Þ

4. Numerical results and discussion

In the case of e 6¼ 0, the exact solution of this Stefan
problem is not known. For e ¼ 0 or T ðx ¼ 0; tÞ ¼ 1, the
exact solution of the problem defined by Eqs. (1)–(3) is

[21]

T ðx; tÞ ¼ 1� erfðxkÞ
erfðkÞ ;

RðtÞ ¼ 2k
ffiffi

t
p

;

ð10Þ

where the value of k is determined from the following

transcendental equation:

ffiffiffi
p

p
kek

2

erfðkÞ ¼ Ste: ð11Þ

In order to initialize our numerical procedures and to

circumvent the singularity at t ¼ 0, i.e. RðtÞ ¼ 0, the
exact temperature distribution and the corresponding

position of the moving boundary given by Eq. (10) are

used at a short time interval tin after t ¼ 0 for the time-
dependent problem (T ðx ¼ 0; tÞ ¼ ½1þ e sinðxtÞ�). One
should mention here that the same initialization proce-

dure has been used previously by Rizwan-uddin both for

the Stefan problem treated in the present paper [4] and

for the Stefan problem with temperature on the left

boundary ramped linearly ðT ðx ¼ 0; tÞ ¼ ð1� 0:2tÞÞ [11].
We solve the Stefan problem defined by Eqs. (1)–(3)

with periodic boundary condition at x ¼ 0 using the fi-
nite difference method, for three different Stefan num-

bers Ste ¼ 0:2, 1.0 and 2.0 and two oscillation

amplitudes e ¼ 0:5 and 0.9. The initial time tin ¼ 0:01, a
constant grid size hð� Dx ¼ 1=NÞ ¼ 0:1 (number of grid
points N ¼ 10 is adopted) and the time step

kð� DtÞ ¼ 0:00002 are used for all numerical calcula-
tions. One should mention here that, for Ste ¼ 1:0 and
2.0, larger time steps k ¼ 0:0001 and grid size h ¼ 0:1
also guarantee stability of our difference schemes ap-

plied. For Ste ¼ 0:2, using the time step k ¼ 0:0001 and
grid size h ¼ 0:2, we also achieve stability of our differ-
ence schemes. It should be noted that such a choice of

smaller time step and finer grid size has been made in

order to get more accurate numerical solutions of the

Stefan problem analyzed. The values of k obtained from
the solution of the transcendental Eq. (11) are 0.30642,

0.62006 and 0.80060 for Ste ¼ 0:2, 1.0 and 2.0 [2], re-
spectively.

In order to have validation of the accuracy of our

finite difference method, first we compare the present

results for moving boundary position with numerical

results obtained previously by Rizwan-uddin [4] with the

nodal integral method. In Fig. 1a the computational

values for moving boundary position are plotted for

three different Stefan numbers for an oscillation ampli-

tude of 0.5 and frequency p=2, as a function of time. The
nodal integral and finite difference results are so close as

to be indistinguishable in the graphs. Fig. 1b shows the

present results for the position of the moving boundary

for three different Stefan numbers for larger oscillation

amplitude of 0.9 and frequency p=2. For both oscillation
amplitudes analyzed, the growth of the moving bound-

ary depends very strongly upon Ste. It is seen from Fig.

1 that in the first stage of moving boundary evolution,

the effect of the oscillating boundary temperature clearly

impacts the growth rate of the moving boundary, and in

the second stage the moving boundary evolves essen-

tially as the square root of time, corresponding to a steep

increase in the temperature on the left boundary. The

moving boundary in the first stage has superimposed

humps corresponding to the forcing period T . Further
time evolution of the moving boundary results in di-

minishing of superimposed humps which occurs faster

for smaller e and larger Ste. A comparison of f ðtÞ and
the corresponding RðtÞ from Fig. 1 shows that as the

domain size increases, the moving boundary takes

longer to respond to the temperature variation taking

place at the left boundary. Consequently, the increasing

delay results in T ðx ¼ 0; tÞ and dRðtÞ=dt to alternately
become in phase and out of phase in time, as can be seen

from Fig. 2. A very strong decrease in the velocity of the

moving boundary for a short time period (tK 2) after

t ¼ 0 is seen for all Ste analyzed. It is important to note
that in the case of the larger oscillation amplitude

e ¼ 0:9 and the smallest Stefan number Ste ¼ 0:2 ana-
lyzed, the velocity of the moving boundary periodically

becomes zero, i.e. periodically there is no movement of

the right boundary, as can be seen from Fig. 2b. This

means that sufficiently large oscillation amplitude of

T ðx ¼ 0; tÞ applied to material with small Stefan num-
ber, may result in periodical termination of the melting

process. On the other hand, for materials with larger

Stefan number (Ste ¼ 1:0 and 2.0), the melting process
occurs without termination. Thus one may conclude
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that it is not only the size of the domain but also the

oscillation parameters, particularly the oscillation am-

plitude of the temperature distribution at the left

boundary, that strongly influence the characteristics of

the boundary movement.

In Figs. 3 and 4, the impact of the oscillation

boundary temperature at x ¼ 0 with different oscillation
amplitudes on the temperature distribution for material

with Ste ¼ 1:0 is shown. For smaller oscillation ampli-

tude, e ¼ 0:5, and smaller domain size, Rðt ¼ 4:0Þ ¼
2:566, the temperature is changing in the whole domain
06 x6 1 (Fig. 3a), while for larger domain size, Rðt ¼
20:0Þ ¼ 5:595, the temperature is changing in only about
the left half of the domain (Fig. 3b). Increasing the oscil-

lation amplitude to e ¼ 0:9 leads to a more pronounced
change in the temperature distribution in the whole

domain both for the smaller domain size (Rðt ¼ 4:0Þ ¼
2:644) and the larger one (Rðt ¼ 20:0Þ ¼ 5:632) (Fig. 4).

Fig. 1. Evolution of the moving boundary for different Stefan

numbers for oscillation amplitude (a) e ¼ 0:5 and (b) e ¼ 0:9.
Also shown are the temperature oscillations at the x ¼ 0 surface
for x ¼ p=2.

Fig. 2. Velocity of the moving boundary as a function of time

for different Stefan numbers for oscillation amplitude (a)

e ¼ 0:5 and (b) e ¼ 0:9. Also shown are the temperature oscil-
lations at the x ¼ 0 surface for x ¼ p=2.
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Thus one can conclude that, for given oscillation fre-

quency, both the size of the domain and the oscilla-

tion amplitude of the temperature distribution at the

left boundary, strongly influence the temperature dis-

tribution, as has been shown for the boundary move-

ment.

It should be mentioned here that the finite difference

approach used in the present work has been successfully

applied earlier to the Stefan problem with Neumann

boundary condition at x ¼ 0 by Caldwell and Savovi�cc
[17] in describing the evaporation of droplets. We have

successfully applied the method to even more compli-

cated Stefan problems with time-dependent boundary

conditions at x ¼ 0 (with exponentially varying and

linearly ramped temperature at the left boundary) by the

same authors [18,22] in describing the one-dimensional

single-phase melting process. Hence, the finite difference

approach may be considered as sufficiently accurate and

efficient for a wide class of Stefan problems which in-

clude both problems with time-independent, as well as

more complicated ones with time-dependent, boundary

conditions.

Fig. 4. Temperature distributions over a forcing period for

Ste ¼ 1:0, oscillation frequency x ¼ p=2 and oscillation am-
plitude e ¼ 0:9, when the domain size is (a) 2.644 and (b) 5.632.

Fig. 3. Temperature distributions over a forcing period for

Ste ¼ 1:0, oscillation frequency x ¼ p=2 and oscillation am-
plitude e ¼ 0:5, when the domain size is (a) 2.566 and (b) 5.595.
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5. Conclusion

We report on the finite difference solution of the

Stefan problem with periodic boundary conditions de-

scribing the melting process of a solid. The position of

the moving boundary and its velocity are evaluated for

different materials with finite different Stefan number.

We obtain that it is not only the size of the domain but

also the oscillation parameters, particularly the oscilla-

tion amplitude of the temperature distribution at the left

boundary, that strongly influence both the boundary

movement (boundary position and its velocity) and

temperature distribution. We further obtain that the

effect of periodically varying boundary condition at

x ¼ 0 on the boundary movement and the temperature
distribution is most pronounced when the domain is

small and diminishes as the domain grows. This dimin-

ishing can be slowed down by increasing the oscillation

amplitudes applied. In the case of sufficiently large

oscillation amplitude applied to materials with small

Stefan number, the velocity of the moving boundary

periodically may become zero, i.e. the periodical termi-

nation of the melting process may occur.

The present computational results for the moving

boundary position agree well with the results obtained

previously using the nodal integral method [4]. Although

the nodal integral method permits the use of relatively

large time steps, the finite difference approach which

needs smaller time steps is shown to provide sufficiently

accurate solutions of the Stefan problem with periodi-

cally oscillating (in time) boundary conditions.
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